

ESTUDO POTÊNCIA-TÉRMICA DO COMBUSTÍVEL AEROESPACIAL DO DIBORANO: APLICAÇÃO DE TÉCNICA DE REAÇÃO HIPOTÉTICA

Luana V.A. Santos¹; Pedro L.L. Santos²; Pedro L.S. Silva³; José B.M. Neto⁴; Anna B.V. Pavão⁵; Raquel M.T. Fernandes⁶; Alamgir Khan⁷.

luana.v.santos02@gmail.com¹; pedrolucaslealsantos@gmail.com²; pedrolucasmgl63@gmail.com³;

britomonteiro712@gmail.com⁴; bia.pavao133@gmail.com⁵; raquelfernandes@professor.uema.br⁶;

alamgir@cecen.uema.br⁷

Palavras-Chave: Química Computacional; Termodinâmica; DFT; Diborano

Introdução

A criação de novas tecnologias de propulsão é crucial para a exploração espacial, exigindo a procura constante por combustíveis com maior densidade energética e eficácia. Neste cenário, o B₂H₆ se destacou como uma das opções mais promissoras. Este composto, um hidreto de boro, foi extensivamente pesquisado nas décadas de 1950 e 1960 devido às suas propriedades energéticas. No entanto, sua elevada toxicidade e instabilidade resultaram no seu abandono em grande escala. Contudo, com o progresso nas tecnologias de simulação e gestão de combustíveis, o interesse no diborano foi reacendido, principalmente por sua habilidade de acumular energia em uma massa molecular relativamente pequena. A literatura científica enfatiza a capacidade do Hidreto de Borano como combustível para foguetes, graças à sua densidade energética significativamente superior à de outros combustíveis convencionais, como o hidrogênio líquido. La Marche et al. (1991) indicaram que o diborano pode liberar duas vezes mais energia em relação aos hidrocarbonetos, o que pode levar a foguetes mais leves e eficazes. Pesquisas subsequentes de Kara et al. (2020) confirmaram que, mesmo com a toxicidade e reatividade do composto, ele continua sendo um candidato promissor para usos espaciais, especialmente com o avanço de novas técnicas de armazenamento seguro. Herbert C., além de suas contribuições inovadoras. Brown, ao entender as características dos compostos de boro, estabeleceu uma fundação robusta para a análise de suas utilizações em propulsão espacial. O seu estudo analisou as interações químicas e a reatividade do hidreto de borano, contribuindo para um entendimento mais aprofundado de como esses compostos podem ser manipulados para aumentar sua eficiência energética. Betowski e Enlow (2003) conduziram um estudo significativo que analisou a afinidade do em reações de combustão e suas características redutoras, tornando-o particularmente pertinente para sistemas de propulsão que necessitam de uma combustão rápida e eficaz.

A importância desta pesquisa está ligada ao aumento da procura por combustíveis mais eficazes para a exploração espacial. Devido à sua elevada densidade energética, o B_2H_6 proporciona uma chance única de aprimorar a performance de foguetes, permitindo velocidades mais elevadas e um transporte de combustível mais reduzido. Comparado a combustíveis convencionais, como o hidrogênio líquido, o diborano necessita de uma quantidade consideravelmente menor para produzir a mesma energia, o que o torna atraente para missões espaciais de longa duração. Ademais, o uso de simulações computacionais sofisticadas, como a Density Functional Theory (DFT), possibilita uma avaliação minuciosa do comportamento do B_2H_6 em ambientes de alta temperatura e pressão. Essas simulações são fundamentais para antecipar o rendimento do combustível sem os perigos ligados aos ensaios experimentais. Portanto, o entendimento teórico das características termodinâmicas e cinéticas do Hidreto de boro pode ser útil na criação de novos propulsores, tornando a pesquisa de

grande importância para o setor aeroespacial. O propósito central da pesquisa é analisar os parâmetros termodinâmicos e cinéticos das reações hipotéticas de combustão do diborano, com o intuito de entender sua eficácia como combustível para foguetes. Empregaremos técnicas de simulação computacional, fundamentadas no DFT com função de base cc-pVDZ, para a determinação de propriedades como entalpia, energia livre de Gibbs, entropia e capacidade térmica. O estudo ocorrerá numa gama de temperaturas de 100K a 1000K, possibilitando uma avaliação completa das características do B_2H_6 em diversas circunstâncias.

A escolha deste estudo para ser o foco se deve às suas propriedades energéticas superiores, que o qualificam como um potencial candidato para combustíveis de foguetes. Apesar da toxicidade do composto ter sido descartada em usos práticos no passado, o progresso nas tecnologias de manipulação e controle de combustíveis abre a possibilidade de sua incorporação em sistemas de propulsão contemporâneos. Além disso, a utilização de simulações computacionais para antecipar o comportamento termodinâmico do diborano diminui consideravelmente os riscos e despesas ligados a ensaios experimentais, tornando esta pesquisa uma estratégia eficaz para entender o potencial deste combustível em futuras missões espaciais.

Material e Métodos

O estudo focou na avaliação das reações hipotéticas de combustão do diborano (B₂H₆), utilizando modelagem computacional para determinar propriedades termodinâmicas e cinéticas das moléculas estudadas. Foi utilizado o software *Gaussian View 6* para modelar a geometria molecular do hidreto de borano. O *Gaussian 09w* foi aplicado para realizar cálculos com a Density Functional Theory (DFT) usando a função de base cc-pVDZ.

As moléculas foram analisadas em diferentes temperaturas: 100K, 298K, 500K, 1000K. As propriedades termodinâmicas (entalpia, energia livre de Gibbs, entropia, calor específico) foram calculadas para as diferentes temperaturas. Os dados foram organizados e analisados usando planilhas Excel para uma comparação estatística dos resultados obtidos. As unidades de medida seguem o Sistema Internacional de Unidades (SI), como joules por mol (J/mol) para entalpia, energia livre de Gibbs e entropia, e as temperaturas estão expressas em Kelvin (K). A seguir será a esquema (figura -1) de reações hipotéticas que serão estudados.

Figura -1 Fluxo grama do mecanismo das reações hipotéticas

Resultados e Discussão

A variação de entalpia é definida termodinâmicamente como sendo a quantidade de calor trocada a pressão constante. Para representar que o calor foi liberado, uma das formas utilizadas é $\Delta H < 0$. Consequentemente para reações endotérmicas utiliza-se $\Delta H > 0$.

Verificou-se que as reações I, IV, V, VII, VIII, XI, e XIII são exotérmicas, enquanto as demais são endotérmicas independente da temperatura. Geralmente, para reações exotérmicas, ocorre diminuição de entalpia quando há aumento de temperatura. Comparando as reações I e IV é possível observar que enquanto a quantidade de calor liberada vai diminuindo com o aumento da temperatura na reação I, o que é esperado, a quantidade de calor liberada na reação IV vai aumentando. O comportamento das reações V e VII são semelhantes ao observado para reação I em relação a temperatura. Na reação VIII observa-se um comportamento diferente dos demais, pois de 100K para 298 K é observado o aumento de variação de entalpia, fugindo do padrão, e só nas próximas temperaturas, de 298 K para 500 K e de 500K para 1000 K, o padrão volta a ser observado.

	Reações	100 K	298 K	500 K	1000 K
Ι	$O+ B_2H6 \rightarrow BH3 + BH3O$	-70,868	-70,276	-70,097	-67,318
II	$BH3+O \rightarrow OH+BH2$	43,299	43,980	44,499	48,101
III	$OH + B2H6 \rightarrow H2O + BH2 + BH3$	23,649	25,021	25,514	24,408
IV	$BH3 + O2 \rightarrow BH3O + O$	-104,923	-105,515	-105,751	-109,021
V	$O+B2H6 \rightarrow BH3O+BH3$	-70,868	-70,276	-70,097	-67,318
VI	BH3O+B2H6 \rightarrow BH3+B2H6O	14,245	14,554	14,893	15,723
VII	$BH3O+O \rightarrow BH2O2+H$	-50,533	-50,144	-49,559	-45,407
VIII	$BH3+O2 \rightarrow BH2O2+H$	-155,456	-155,659	-155,314	-154,429
IX	O+BH2O2→ BH2O+O2	92,491	92,834	92,826	96,038
Х	$O+BH3O \rightarrow BH2O+OH$	33,799	34,529	35,085	38,869
XI	O+B2H6→ BH3+BH3O	-70,868	-70,276	-70,097	-67,318
XII	$O+BH3O \rightarrow O2+BH3$	104,923	105,514	105,750	109,021
XIII	BH3+BH3→ B2H6	-34,055	-35,238	-35,652	-34,921

Tabela -1 Variação de Entalpia das reações hipotéticas em Kcal/mol

A variação de entropia é uma grandeza termodinâmica referente ao grau de desordem dos sistemas. Nas reações químicas é possível inferir que houve aumento ou diminuição de entropia através do sinal. Processos que ocorrem com aumento de entropia são representados por $\Delta S > 0$ e processos que ocorrem com diminuição de entropia são representados por $\Delta S <$ 0.As reações I, II, III, V, IX, X, XI e XII ocorrem com aumento de entropia enquanto que as demais ocorrem com diminuição de entropia. Particularmente observa-se um comportamento diferenciado na reação VIII. Nas temperaturas de 100 K e 298 K o processo ocorre com redução de entropia, porém nas temperaturas de 500K e 1000 K ocorre aumento de entropia.

	Reações	100 K	298 K	500 K	1000 K
Ι	$O+ B_2H6 \rightarrow BH3 + BH3O$	15,011	18,502	18,995	18,241
II	$BH3+O \rightarrow OH+BH2$	16,791	20,554	21,911	22,301
III	$OH + B2H6 \rightarrow H2O + BH2 + BH3$	27,752	35,688	37,039	35,687
IV	$BH3 + O2 \rightarrow BH3O + O$	-9,918	-13,303	-13,945	-13,816
V	$O+B2H6 \rightarrow BH3O+BH3$	15,011	18,502	18,995	18,241
VI	BH3O+B2H6 \rightarrow BH3+B2H6O	-5,692	-4,143	-3,264	-2,25
VII	$BH3O+O \rightarrow BH2O2+H$	-2,694	-0,844	0,659	1,792
VIII	$BH3+O2 \rightarrow BH2O2+H$	12,612	-14,147	-13,285	-12,023
IX	$O+BH2O2 \rightarrow BH2O+O2$	13,766	15,924	15,924	15,664
Х	$O+BH3O \rightarrow BH2O+OH$	14,688	18,693	20,146	20,769
XI	$O+B2H6 \rightarrow BH3+BH3O$	15,011	18,5025	18,995	18,241
XII	$O+BH3O \rightarrow O2+BH3$	9,918	13,3035	13,945	13,816
XIII	$BH3+BH3 \rightarrow B2H6$	-24,935	-31,806	-32,944	-32,057

Tabela – 2 Variação de Entropia das Reações químicas em Kcal/mol

De modo geral o aumento da temperatura provoca aumento de entropia, pois quanto maior a variação de temperatura maior será a quantidade de calor e consequentemente verifica-se maior agitação molecular.

A energia livre de Gibbs é um parâmetro termodinâmico através do qual identifica-se a espontaneidade de processos. Em reações químicas é necessário conhecer o valor da variação de entalpia ($\Delta G < 0$,), da variação de entropia (ΔS) e da temperatura em que acontece cada reação, pois o valor de ΔG é dado pela seguinte equação: $\Delta G = \Delta H - T\Delta S$. Na reação III (Tabela -3) pode-se observar que o processo não é espontâneo nas temperaturas 100 K, 298 K e 500 K, porém apresenta $\Delta G < 0$ a 1000 K passando a ser espontânea. Como a reação III é endotérmica com aumento de entropia é possível inferir que a temperatura é um fator determinante para espontaneidade da mesma.

Tabela - 3 Variação de Energia Livre de Gibbs das Reações químicas em Kcal/mol

	Reações	100 K	298 K	500 K	1000 K
Ι	$O+ B_2H6 \rightarrow BH3 + BH3O$	-72,372	-75,807	-79,625	-89,009
II	$BH3+O \rightarrow OH+BH2$	41,615	37,836	33,509	22,339
III	$OH + B2H6 \rightarrow H2O + BH2 + BH3$	20,866	14,353	6,937	-11,392
IV	$BH3 + O2 \rightarrow BH3O + O$	-103,929	-101,537	-98,756	-91,771
V	$O+B2H6 \rightarrow BH3O+BH3$	-72,372	-75,807	-79,625	-89,009
VI	BH3O+B2H6 \rightarrow BH3+B2H6O	14,817	15,794	16,531	17,980
VII	$BH3O+O \rightarrow BH2O2+H$	-50,262	-49,891	-49,889	-50,596
VIII	$BH3+O2 \rightarrow BH2O2+H$	-154,191	-151,429	-148,643	-142,368
IX	O+BH2O2→ BH2O+O2	91,111	88,074	84,839	76,933
Х	O+BH3O→ BH2O+OH	32,326	28,941	24,980	14,644
XI	O+B2H6→ BH3+BH3O	-72,372	-75,807	-79,625	-89,009
XII	$O+BH3O \rightarrow O2+BH3$	103,928	101,537	98,756	91,771
XIII	BH3+BH3→ B2H6	-31,554	-25,730	-19,131	-2,762

Uma reação que se processa de forma espontânea, além de consumir pouca energia para iniciar, geralmente apresenta um rendimento maior. Para uma reação em equilíbrio

químico é possível inferir que à medida em que a concentração dos produtos aumenta tem-se um aumento no rendimento reacional e, consequentemente, na constante de equilíbrio.

	Reações	100 K	298 K	500 K	1000 K
Ι	$O+ B_2H6 \rightarrow BH3 + BH3O$	1,439	1,136	1,083	1,045
II	$BH3+O \rightarrow OH+BH2$	0,811	0,938	0,966	0,988
III	$OH + B2H6 \rightarrow H2O + BH2 + BH3$	0,900	0,976	0,993	1,005
IV	$BH3 + O2 \rightarrow BH3O + O$	1,687	1,187	1,104	1,047
V	$O+B2H6 \rightarrow BH3O+BH3$	1,439	1,136	1,083	1,045
VI	$BH3O+B2H6 \rightarrow BH3+B2H6O$	0,928	0,973	0,983	0,992
VII	$BH3O+O \rightarrow BH2O2+H$	1,287	1,087	1,051	1,025
VIII	$BH3+O2 \rightarrow BH2O2+H$	2,172	1,291	1,161	1,074
IX	$O+BH2O2 \rightarrow BH2O+O2$	0,632	0,861	0,918	0,962
Х	$O+BH3O \rightarrow BH2O+OH$	0,849	0,952	0,975	0,992
XI	O+B2H6→ BH3+BH3O	1,439	1,136	1,083	1,045
XII	$O+BH3O \rightarrow O2+BH3$	0,592	2,591	0,905	0,954
XIII	BH3+BH3→ B2H6	1,172	1,044	1,019	1,001

Tabela – 4 Taxa de Reação química

De modo geral o aumento da temperatura deve provocar diminuição de rendimento nas reações espontâneas que são exotérmicas com aumento de entropia. Isso pode ser evidenciado nas reações I, V e XI.

Conclusões

O presente trabalho teve como objetivo viabilizar o estudo da utilização do diborano, como combustível de propulsão para foguetes, tendo em vista os aspectos termodinâmicos e cinéticos utilizando reações hipotéticas da combustão.

De posse dos resultados concluímos que a técnica de reação hipotéticas do tipo isodésmica tem muito sucesso em determinar os tipos de reações de combustão, e nos ajudou a esclarecer quais das reações podem estão envolvidas na absorção do calor produzido durante o processo.

Afinal, Conclui-se que o hidreto de borano e suas variações demonstram grande potencial como combustível de foguete. O aumento da temperatura causa uma expressiva liberação de energia (entalpia) e desordem molecular (entropia), o que aponta para uma combustão eficiente e estabilidade térmica em altos níveis. A energia livre de Gibbs reforça que as reações se tornam mais espontâneas com o aquecimento, validando o hidreto de borano como um forte candidato a propelente.

Assim, os resultados reforçam o potencial de aplicação na indústria, além de abrir novas perspectivas para estudos futuros envolvendo combustíveis de alta energia. infelizmente não foi possível completar a discussão das reações isodérmicas.

Agradecimentos

Gostaria de expressar minha gratidão ao programa PIBIC da UEMA, laboratório de Físico-química e ao Núcleo de Ensino de Química Teórica e Aplicada (NEQTA). Agradeço à minha família e a Deus por tudo.

Referências

AGÊNCIA DE SUBSTÂNCIAS TÓXICAS E DOENÇAS REGISTRO (ATSDR). Gerenciando Incidentes com Materiais Perigosos. Volume III – Diretrizes de Manejo Médico

para Doenças Agudas Exposições químicas: Diborano. Atlanta, GA: Departamento de Saúde e Serviços Humanos dos EUA, Serviço de Saúde Pública, 2002.

Davenport, Derek A.. "Herbert Charles Brown". *Enciclopédia Britânica*, 19 de fevereiro de 2024, https://www.britannica.com/biography/Herbert-C-Brown. Acessado em 29 de fevereiro de 2024.

L.D Betowski, Mark Enlow, A high-level calculation of the proton affinity of diborane, Journal of Molecular Structure: THEOCHEM, Volume 638, Issues 1–3, 2003, Pages 189-195, <u>https://doi.org/10.1016/S0166-1280(03)00582-7</u>.

P.H. LA MARCHE, G.R. WALTON, E.D. PERRY, D.M. MANOS, M. LEONARD, G.J. GETTELFINGER, H.F. DYLLA, H.L. BUSH, THE DIBORANE GAS INJECTION AND EXHAUST SYSTEM FOR THE TOKAMAK FUSION TEST REACTOR**This work funded by the United States Department of Energy, Contract No. DE-AC02-CHO3076., Editor(s): B.E. KEEN, M. HUGUET, R. HEMSWORTH, Fusion Technology 1990, Elsevier, 1991, Pages 341-345, https://doi.org/10.1016/B978-0-444-88508-1.50051-7.

Ozan Kara, Hakkı Karakaş, M. Arif Karabeyoğlu, Hybrid rockets with mixed N2O/CO2 oxidizers for Mars Ascent Vehicles, Acta Astronautica, Volume 175, 2020, Pages 254-267, https://doi.org/10.1016/j.actaastro.2020.05.060.