

ESTUDO A NÍVEL DFT DO B₁₂N₁₂ PURO E MODIFICADO COM Y PARA ADSORÇÃO DO GÁS HIDROGÊNIO

<u>Wellington da C. L. do Nascimento¹</u>; Natanael S. Sousa¹; Jaynne dos S. Martins¹; Adeilton P. Maciel¹

¹Universidade Federal do Maranhão, (UFMA), 65080-805 São Luís, MA, Brasil.

Palavras-Chave: Nanogailoas B₁₂N₁₂, sensor, gás H₂.

Introdução

Os sistemas baseados em combustíveis fósseis enfrentam não apenas o desafio de esgotamento desta fonte de energia, mas também a liberação de vários gases poluentes nocivos para a atmosfera [1]. Nas últimas décadas, o gás hidrogênio H₂ tem se tornado uma das fontes de recursos energéticos alternativos de maior destaque; devido ser uma fonte de energia limpa e abundante na natureza [2]. No entanto, a comunidade científica tem se depadarado com um grande desafio: encontrar materiais que possam armazená-lo de forma eficiente [3]. Alguns materiais têm sido explorados, como materiais à base de carbono [4], estruturas organometalicas [5], hidreto metálico [6] e polimeros orgânicos [7].

Nanomateriais como: nanofolhas, nanotubos e as nanogaiolas são considerados a classe de materiais de maior potencial para armazenamento de hidrogênio; devido às suas excelentes propriedades eletrônicas e também a sua área de superfície [8]. No entanto, esses materiais puros não apresentam energias de ligação de hidrogênio suficiente para armazenamento em condições razoáveis [9]. A modificação na estrutura desses nanomateriais, pode alterar drasticamente a estrutura e as suas propriedades eletrônicas; o que pode melhorar a capacidade de armazenamento do gás H_2 [10]. Na literatura está reportada várias investigações, nas quais relatam a fisissorção e quimissorção de hidrogênio [11-14].

No sentido de melhorar as propriedades de adsorção das nanogaiolas de $(BN)_n$, modificações estruturais com metais de transição vêm sendo investigadas [15-17]. Rakrai et al. [18] investigaram em nível DFT com funcional B3LYP e conjunto de bases LANL2DZ, a capacidade de armazenamento do gás H₂, utilizando nanogaiolas de B₁₂N₁₂ dopado com metais de transição do grupo 8B (TM = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir e Pt). Foram estudadas, a estabilidade estrutural, a capacidade de adsorção e as propriedades eletrônicas, antes e após a adsorção do gás nH₂ (n = 1-4) em nanogaiola B₁₂N₁₂ dopado com TM. Os resultados dos cálculos relataram uma forte interação entre cage e o TM, sendo que dentre os metais analisados, o Ósmio foi o que apresentou mais forte afinidade com o B₁₂N₁₂. Em relação às moléculas de hidrogênio adsorvidas em B₁₂N₁₂ dopado com TM nanocages, constatou-se que as moléculas de hidrogênio podem se adsorver fortemente em B₁₂N₁₂ dopado com TM, apresentando consideraveis valores de energia de adsorção, sendo que, dos sistemas investigados, o OsB₁₁N₁₂ apresentou a maior interação com as moléculas do gás H₂.

Dentre os metais de transição da segunda fila, o ítrio (Y) tem ganhado destaque em estudos como modificador de nanoestruturas para uma adsorção eficiente do gás hidrogênio. Em um estudo experimental, Oku et al. [19] sintetizaram nanogaiolas de $B_{36}N_{36}$ puras e encapsuladas com ítrio (Y@B₃₆N₃₆), utilizando método de fusão a arco. As estruturas criadas foram confirmadas por microscopia eletrônica e espectrometria de massas. Wang e Tian [20]

realizaram cálculos em DFT para analisar o comportamento de adsorção do gás hidrogênio em nanogaiola $C_{48}B_{12}$ decorada com Y. As análises sugerem que até seis moléculas de H₂ podem ser ligadas em cada átomo de Y com considerável energia de ligação (quimissorção). As simulações esclarecem o mecanismo da interação entre $C_{48}B_{12}$, átomos de Y e moléculas de H₂, e também prevê a nanogaiola $C_{48}B_{12}$ como um material promissor para aplicação de armazenamento do hidrogênio. M.D. Esrafili e S. Sadeghi [21] investigaram o comportamento do nanocluster B_{38} decorado com Y para armazenamento de hidrogênio. Os resultados mostraram que a energia de adsorção do $Y_4@B_{38}$ com a mólecula H₂ variou de 0,180 a 0,249 eV. Cada átomo de Y em Y₄@B₃₈ pode conter até seis moléculas de H₂, com valores de energias que representam fisiossorção e quimiossorção. Os autores indicam a nanogaiola Y₄@B₃₈ como material com potencial para adsorção e armazenamento do gás H₂.

Entretanto, não foram encontrados na literatura estudos sobre os efeitos de modificações na nanogaiola $B_{12}N_{12}$ com metal de transição Y nas configurações: dopados, decorados e encapsulados, para adsorção de H_2 . Neste contexto, o objetivo deste estudo é investigar a influência de como diferentes modificações na nanogaiola $B_{12}N_{12}$ com o metal Y podem afetar a interação com o gás H_2 , utilizando a teoria do funcional da densidade (DFT).

Material e Métodos

Para os cálculos de DFT utilizou-se o programa ORCA 5.0[22]. As nanogaiolas $B_{12}N_{12}$ puro e Y-modificadas foram otimizadas usando o funcional B3LYP-D3[23,24] e o conjunto de bases LanL2DZ. Realizou-se análise de frequência, para confirmação das estruturas otimizadas. A modificação do $B_{12}N_{12}$ com Y resultou em cinco estruturas otimizadas [25]: dopadas (Y $B_{11}N_{12}$ e $B_{12}N_{11}Y$, com substituição de um átomo de boro e um átomo de nitrogênio por um átomo de Y, respectivamente); decoradas (Y@b₆₄ e Y@b₆₆, com um átomo de Y acima da ligação atômica entre os anéis tetragonal e hexagonal e acima da ligação atômica entre dois anéis hexagonais) e a estrutura encapsulada (Y@B₁₂N₁₂, onde o Y está posicionado no interior da B₁₂N₁₂).

A estabilidade das estruturas foi investigada utilizando como parâmetro a energia de coesão (E_{coh}), usando a equação a seguir [26]:

$$E_{coh} = \frac{1}{N} (E_{nanocage} - xE_B - yE_N - zE_Y)$$
(1)

onde $E_{nanocage}$ é a energia total da nanocage, enquanto E_B , E_N e E_Y são as energias do B, N e Y; x, y e z são as quantidades de cada átomo na estrutura, e N é o número total de átomos.

O valor E_{gap} é definido como:

$$E_{gap} = E_{LUMO} - E_{HOMO} \tag{2}$$

(2)

onde E_{gap} é o *band gap*, e E_{LUMO} e E_{HOMO} são as energias do LUMO (orbital molecular não ocupado mais baixo) e HOMO (orbital molecular ocupado mais alto), respectivamente.

O valor da sensibilidade eletrônica (ΔE_{gap}) para a interação entre o gás H₂ e B₁₂N₁₂ ou B₁₂N₁₂ modificadas com metal Y foram obtidas pela equação, a seguir:

$$\Delta E_{gap} = \frac{(E_{gap}_{(nanocage-H2)} - E_{gap(nanocage)})}{E_{gap}_{(nanocage)}}$$
(3)

onde $E_{gap}_{(nanocage-H2)}$ é o gap de energia para nanogaiolas de $B_{12}N_{12}$ com interação com o H_2 ou Y- $B_{12}N_{12}$ - H_2 e $E_{gap}_{(nanocage)}$ é o gap de energia para o $B_{12}N_{12}$ puro ou nanogaiolas modificadas com Y- $B_{12}N_{12}$.

O valor da E_{ads} para a interação entre moléculas de H_2 e nanogaiolas $B_{12}N_{12}$ puro ou Y- $B_{12}N_{12}$ foi calculado da seguinte forma:

$$E_{ads} = E_{(nanocage-H2)} - \left(E_{(nanocage)} + E_{(H2)}\right) + E_{BSSE}$$
⁽⁴⁾

onde $E_{((nanocage-H2))}$ é a energia da nanogaiola $B_{12}N_{12}$ ou $Y-B_{12}N_{12}$ ligada ao H_2 , $E_{((nanocage))}$ é a energia das nanogaiolas $B_{12}N_{12}$ ou $B_{12}N_{12}$ modificadas com Y, $E_{((H2))}$ é a energia da molécula de H_2 , e E_{BSSE} é o erro de superposição do conjunto de bases (BSSE).

O tempo de recuperação (τ), que está exponencialmente relacionado com a E_{ads} do sistema, pode ser calculado pela equação [27-29]:

$$\tau = v_0^{-1} e^{-E_{ads}/k_B T} \tag{5}$$

onde v_0 é a frequência de tentativa ($10^{12} v_0 s^{-1}$) [30,31], k_B é a constante de Boltzmann (8,62 x 10^{-5} eVK^{-1}), e *T* é a temperatura termodinâmica (K).

Os parâmetros dos descritores quânticos foram calculados baseados nos valores dos orbitais de fronteira como mostradas nas equações abaixo. Potencial de ionização (IP), dureza química (η), maciez (S), o potencial químico (μ), afinidade eletrônica (eA), eletrofilicidade (ω) e o nível de Fermi (E_f). Todos foram calculados em termos de HOMO e LUMO [32] como:

$$eA \approx -E_{LUMO} \tag{6}$$

$$IP \approx -E_{HOMO} \tag{7}$$

$$\eta \approx \frac{1}{2} (E_{LUMO} - E_{HOMO}) \tag{8}$$

$$\mu \approx \frac{1}{2} (E_{LUMO} + E_{HOMO}) \tag{9}$$

$$S \approx \frac{1}{2} \eta$$
 (10)

$$E_f \approx E_{HOMO} + \frac{1}{2} \left(E_{LUMO} - E_{HOMO} \right) \tag{11}$$

Por fim, a eletrofilicidade (ω) [25] foi calculada conforme Parr et al. [33], usando termos de potencial químico e dureza química conforme a equação (12):

$$\omega = \frac{\mu^2}{2\eta} \tag{12}$$

A eletrofilicidade é utilizada para comparar as mudanças de reatividade de $B_{12}N_{12}$ puro e modificado após interação com Y.

Resultados e Discussão

Análise Estrutural

Este trabalho foi dividido em duas etapas: na primeira, a nanogaiola $B_{12}N_{12}$ foi modificada com Y (dopada, decorada e encapsulada) e na segunda, o gás H_2 foi adsorvido nas estruturas das nanogaiolas $B_{12}N_{12}$ pura e modificadas com Y.

Figura 1. Estruturas das nanogaiolas otimizadas: $B_{12}N_{12}$ puro, $YB_{11}N_{12}$, $B_{12}N_{11}Y$, $Y@B_{12}N_{12}$, $Y@b_{64}$, $Y@b_{66}$.

Fonte: Autoria própria.

As estruturas otimizadas de nanogaiolas $B_{12}N_{12}$ puro e modificadas com Y (Y $B_{11}N_{12}$, $B_{12}N_{11}Y$, Y@ $B_{12}N_{12}$, Y@ b_{64} e Y@ b_{66}) estão representadas na Figura 1. Para $B_{12}N_{12}$ puro, os comprimentos de ligação B-N entre dois anéis hexagonais ($b_{66} = 1,437$ Å) e entre um anel hexagonal e um anel tetragonal ($b_{64} = 1,485$ Å) são consistentes com pesquisas anteriores [16,17]. Temos ainda, duas estruturas dopadas com ítrio Y $B_{11}N_{12}$ e $B_{12}N_{11}Y$. Duas estruturas decoradas: Y@ b_{66} e Y@ b_{64} . E por fim, uma estrutura encapsulada: Y@ $B_{12}N_{12}$. Observa-se que quando há a substituição de um átomo de boro ou nitrogênio por um átomo de ítrio, ocorre uma deformação estrutural na nanogaiola $B_{12}N_{12}$ puro.

Os resultados da Tabela 1, mostram os parâmetros: energia de coesão (E_{cohs} eV), momento dipolar (DM, Debye), energia HOMO (E_H , eV), energia LUMO (E_L , eV) e gap de energia (E_{gap} , eV) para as estruturas $B_{12}N_{12}$ puro e modificadas com Y. Além disso, informam a energias de orbitais α - para compostos singleto e energias orbitais β - para os compostos dupletos. A nanogaiola $B_{12}N_{12}$ puro mostrou momento dipolo zero. O maior valor de momento dipolo entre as estruturas modificadas foi para o $B_{11}N_{12}Y$ 10.18 Debye, enquanto que o menor foi para Y@B_{12}N_{12} 1.63 Debye. Os resultados de E_{gap} para $B_{12}N_{12}$ puro foi de 5.93 eV, que está de acordo com resultados já reportados na literatura, conforme o trabalho de Rakrai et al. [18], com $E_{gap} = 5.95$ eV. Os resultados de E_{gap} para as demais estruturas estudadas foram: 3.93; 2.69; 1.99^a; 2.15^{β}; 2.34^{α}; 3.07^{β}; 2.37^{α}; 2.61^{β} para: YB₁₁N₁₂, B₁₂N₁₁Y, Y@B₁₂N₁₂ (α – singleto/ β – dupleto), Y@b₆₄ (α – singleto/ β – dupleto) e Y@b₆₆ (α – singleto/ β – dupleto), respectivamente. Nota-se que a modificação da nanocage B₁₂N₁₂ com o metal Y diminui significativamente os valores do E_{gap} , este efeito condiciona essas estruturas para uma melhor condutividade e reatividade, quando comparadas ao B₁₂N₁₂ puro.

Tabela 1. Os valores calculados de energia coesiva (E_{coh} , eV), momento dipolar (*DM*, Debye), energia HOMO (E_H , eV), energia LUMO (E_L , eV) e gap de energia (E_{gap} , eV) para os sistemas isolados.

System	E_{coh}	DM	E_H	E_L	E_{Gap}
$B_{12}N_{12}$	-6.82	0.00	-7.77	-1.84	5.93
YB ₁₁ N ₁₂	-6.81	10.18	-6.71	-2.78	3.93
$B_{12}N_{11}Y$	-6.49	9.71	-5.48	-2.79	2.69
$Y@B_{12}N_{12}$	-6.27	1.63	-4.88 ^α	-2.89 ^α	1.99 ^α
			-5.00 ^β	-2.85 ^β	2.15 ^β
Y@b ₆₄	-6.64	6.93	-4.53 ^α	-2.19 ^α	2.34 ^{<i>a</i>}
			-5.70 ^β	-2.63 ^β	3.07 ^β
Y@b ₆₆	-6.63	7.21	-4.57 ^α	-2.20 ^α	2.37 ^α
			-5.33 ^β	-2.72 ^β	2.61 ^β

 α - spin up - (alpha); β - spin down - (beta)

Fonte: Autoria própria.

Também é importante destacar que os valores negativos de E_{coh} para as nanogaiolas $B_{12}N_{12}$ e modificadas (YB₁₁N₁₂, B₁₂N₁₁Y, Y@B₁₂N₁₂, Y@b₆₄ e Y@b₆₆) provam que todas as estruturas são possíveis. Os resultados mostraram ainda que, após a interação com o metal (Y) todos os sistemas se tornaram mais reativos que o $B_{12}N_{12}$ puro ($E_{coh} = -6.82$ eV).

Na tabela 2 estão representados os descritores quânticos das estruturas estudadas. O potencial de ionização para $B_{12}N_{12}$ puro é maior (7.77 eV) quando comparado com as estruturas $YB_{11}N_{12}$ (6.71 eV), $B_{12}N_{11}Y$ (5.48 eV), $Y@B_{12}N_{12}$ (4.88 eV), $Y@b_{64}$ (4.53 eV) e $Y@b_{66}$ (4.57

eV), este comportamento é oposto aos valores das afinidades eletrônicas (eA) do $YB_{11}N_{12}$, $B_{12}N_{11}Y e Y@B_{12}N_{12}$ que aumentaram após a modificação do $B_{12}N_{12}$.

Tabela 2. Propriedades eletrônicas calculadas: dureza química (η , eV), suavidade (S, eV⁻¹), Potencial de ionização (IP, eV), afinidade eletrônica (eA, eV), potencial químico (μ , eV), eletrofilicidade (ω , eV) e nível de Fermi (E_f, eV).

System	IP	η	S	μ	eA	ω	E_{f}
$B_{12}N_{12}$	7.77	2.96	0.17	-4.80	1.84	3.90	-4.80
$YB_{11}N_{12}$	6.71	1.97	0.25	-4.75	2.78	5.73	-4.75
$B_{12}N_{11}Y \\$	5.48	1.34	0.37	-4.13	2.79	6.35	-4.13
$Y@B_{12}N_{12}$	4.88	0.99	0.51	-3.89	2.90	7.64	-3.89
Y@b ₆₄	4.53	1.17	0.43	-3.36	2.19	4.83	-3.36
Y@b ₆₆	4.57	1.19	0.42	-3.39	2.20	4.84	-3.39

Fonte: Autoria própria.

O sistema YB₁₁N₁₂ apresentou os maiores valores para os parâmetros dureza química, potencial de ionização e afinidade eletrônica. Em relação a maciez, foi notado menor valor da série para o sistema (S = 0.25 eV). O sistema com maior valor de eletrofilicidade foi o Y@B₁₂N₁₂ ($\omega = 7.64 \text{ eV}$), de modo que a menor eletrofilicidade encontrada foi para o Y@b₆₄ ($\omega = 4.83 \text{ eV}$). Com base nos princípios de máximos valores de dureza (η) [34] e mínimos de eletrofilicidade (ω) [35], sabe-se que sistemas com maior de dureza química e menor de eletrofilicidade, tendem a apresentar sistemas com excelente estabilidade. Sendo assim, como relatado pela *E_{coh}* o B₁₂N₁₂ puro apresenta maior estabilidade que os sistemas modificados com ítrio.

Análise de Adsorção

Na etapa de adsorção do gás H₂ na superfície das nanogaiolas de $B_{12}N_{12}$ e modificadas com Y, observou-se uma interação do átomo de ítrio da nanogaiola BN com o átomo de hidrogênio. Mostrado nas estruturas otimizadas da Figura 2. Observa-se que o gás H₂ não se liga ao $B_{12}N_{12}$ puro, e a inserção do metal (Y) a nanogaiola BN tenderam a menores distâncias entre o cage/gás. Foi notado que para adsorção do sistema $B_{12}N_{11}Y$ –H₂, a molécula de H₂ se dissociou e se ligou a estrutura da nanogaiola $B_{12}N_{11}Y$.

Após a adsorção do H₂ observou-se uma redução do gap de energia para todos os sistemas estudados, como demonstrado na Tabela 3, que mostra os valores de energia dos orbitais de fronteira dos sistemas após a adsorção do gás, assim como o valor da sensibilidade dos sistemas ao gás (ΔE_{gap} (%)).

Figura 2. Estruturas otimizadas da adsorção do gás hidrogênio nas nanogaiolas $B_{12}N_{12}$ puro, $YB_{11}N_{12}$, $B_{12}N_{11}Y$, $Y@B_{12}N_{12}$, $Y@b_{64} e Y@b_{66}$.

Fonte: Autoria própria.

A sensibilidade de um sistema se caracteriza pela variação do intervalo do gap antes e após adsorção do gás. Neste contexto, para o sistema $B_{12}N_{12}$ puro a sensibilidade foi de (0.22%) mediante a interação com H₂. Entre os sistemas modificados com metal (Y), o Y@b₆₄ – H₂ foi o menos sensível ao gás (0.14%), em contra partida o mais sensível à presença do gás H₂ foi Y@b₆₆–H₂ com (37.37%).

Além da sensibilidade do sistema frente ao gás que se deseja detectar outros fatores são de fundamental importância para determinar a aplicabilidade potencial de um nanocage com material para sensor de gás, como a energia de adsorção (E_{ads}) e o tempo de recuperação do gás (τ). Estes parâmetros fornecem informações sobre o quanto a nonogaiola é capaz de adsorver o gás em sua superfície e de quanto tempo é necessário para a dessorção do mesmo, respectivamente. Os resultados mostram que o $B_{12}N_{12}$ puro adsorve o gás H_2 ($E_{ads} = -0.46 \text{ eV}$), por meio de uma interação tipo Van der Waals, caracterizando assim, uma adsorção puramente física. Sendo que, todos os sistemas modificados tiveram valores de energia de adsorção (< -1 eV), o que indica uma adsorção química da interação cage/gás.

System	E_H	E_L	E_{Gap}	ΔE_{gap} (%)	E_{ads}	τ	DM
$B_{12}N_{12} - H_2$	-7.76	-1.85	5.91	0.22	-0.46	59.32 us	0.16
$YB_{11}N_{12} - H_2$	-6.68	-2.61	4.07	3.47	-0.55	1.97 ms	10.48
$B_{12}N_{11}Y-H_{2} \\$	-5.91	-2.98	2.93	8.94	-0.50	281.3 us	6.60
$Y@B_{12}N_{12} -$	-4.82 ^α	-2.85 ^α	1.97 ^α	0.49		83 x10 ⁵ h	2.08
H_2							
	-4.96 ^β	-2.79 ^β	2.18^{β}	1.13	-1.33		
$Y@b_{64} - H_2$	-4.52 ^α	-2.18 ^α	2.34 ^α	0.14		32.43 h	6.94
	-5.70 ^β	-2.61 ^β	3.09 ^β	0.52	-1.01		
$Y@b_{66} - H_2$	-4.44 ^α	-2.14 ^α	2.30 ^α	3.04		3.14 h	7.49
	-6.09 ^β	-2.49 ^β	3.60 ^β	37.37	-0.95		

Tabela 3. HOMO (eV), LUMO (eV), E_{gap} (eV), sensibilidade ($\Delta E_{gap}(\%)$), tempo de recuperação (τ) e momento dipolar (*DM*, Debye), dos sistemas após a adsorção do gás H₂.

Fonte: Autoria própria.

O sistema Y@b₆₆–H₂ apresentou um valor de energia de adsorção moderada da interação com o gás H₂ (E_{ads} = -0.95 eV), o que garante uma interação química cage/gás. Em relação ao tempo de recuperação, o sistema Y@b₆₆–H₂ também obteve resultado relevante (τ = 3.14 h) caracterizando que o material tem potencial para aplicação no sensoriamento do gás H₂.

Conclusões

Neste trabalho foram desenvolvidos cálculos em nível DFT-D3 para investigar a aplicação de nanogaiolas de $B_{12}N_{12}$ modificadas com metal (Y) para adsorção do gás H₂. Baseado nos dados obtidos, o sistema Y@b₆₆ apresentou melhores resultados, entre os sistemas estudados, para adsorção do gás H₂, com: sensibilidade eletrônica ΔE_{gap} (%) = 37.37%, energia de adsorção E_{ads} = -0.95 eV e tempo de recuperação de (τ = 3.14 h). Sendo assim, a nanogaiola Y@b₆₆ se mostra um material promissor para aplicação como sensor para detecção do gás H₂.

Agradecimentos

Agradeço a UFMA, ao programa associativo DQUIM-UFMA-IFMA e as agências de fomente CAPES, FAPEMA e CNPQ.

Referências

1. Abe, J. O.; Popoola, A.; Ajenifuja, E.; Popoola, O. Hydrogen energy, economy and storage: review and recommendation. Int J Hydrogen Energy, 44, 15072.2019

2. Goler, S.; Coletti, C.; Tozzini, V.; Piazza, V.; Mashoff, T.; Beltram, F.; Pellegrini, V.; Heun, S. Influence of graphene curvature on hydrogen adsorption: toward hydrogen storage devices. **J Phys Chem C**, 117(22), 11506e13, 2013.

3. Nikitin, A.; Li, X.; Zhang, Z.; Ogasawara, H.; Dai, H.; Nilsson, A. Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C–H Bonds. **Nano Lett**, *8*, 162–167, 2008.

4. Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J. Synthesis and hydrogen-storage behavior of metal–organic framework MOF-5. **Int J Hydrog Energy**, 34, 1377–1382, 2009.

5. Sakintuna, B.; Lamari–Darkrim, F.; Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. **Int J Hydrog Energy** 32, 1121–1140, 2007.

6. Budd, P. M.; Butler, A.; Selbie, J.; Mahmood, K.; McKeown, N. B.; Ghanem, B.; Msayib, K.; Book, D.; Walton, A. **Phys Chem Chem Phys** 9:1802–1808, 2007.

7. Ahangari, M. G.; Mashhadzadeh, A.H. Density functional theory based molecular dynamics study on hydrogen storage capacity of C24, B12N12, Al12 N12, Be12O12, Mg12O12, and Zn12O12 nanocages, **Int J Hydrog Energy**, 45, 6745–6756, 2007.

8. Goudarziafshar, H.; Abdolmaleki, M.; Moosavi–zare, A. R.; Soleymanabadi, H. Hydrogen storage by Ni-doped silicon carbide nanocage: A theoretical study, **Physica E Low Dimens Syst Nanostruct**, 10, :78–84, 2018.

9. Tabtimsai, C.; Ruangpornvisuti, V.; Tontapha, S.; Wanno, B. A DFT investigation on group 8B transition metaldoped silicon carbide nanotubes for hydrogen storage application. **Appl Surf Sci**, 439, 494, 2018.

10. Andreoni, W.; Curioni, A.; Kroes, J. M. H.; Pietrucci, F.; Groning, O. Exohedral hydrogen chemisorption on a carbon nanotube: the clustering effect, **J. Phys. Chem. C.**, 116 (1) 269–275, 2012.

11. Li, L. K.; Ma, Y. Q.; Li, K. N.; Xie, W. L.; Huang, B. Structural and electronic properties of H₂, CO, CH₄, NO, and NH₃ adsorbed onto Al₁₂Si₁₂ nanocages using density functional theory. **Front. Chem.** 11:1143951, 2023.

12. Parkar, P.; Chaudhari, A. Hydrogen storage properties of Ti-doped C_{20} nanocage and its derivatives: A comprehensive density functional theory investigation. **Materials Chemistry and Physics**, 319, 129340, 2024.

13. Janjua, M. R. S.A.; Hydrogen as an energy currency: Encapsulation of inorganic $Ga_{12}N_{12}$ with alkali metals for efficient H_2 adsorption as hydrogen storage materials. Journal of Physics and Chemistry of Solids, 160, 110352, 2022.

14. Lale, A.; Bernard, S.; Demirci, U. B.; Boron Nitride for Hydrogen Storage. **ChemPlusChem**, 83, 893 – 903, 2018.

15. Sousa, N. S.; Silva, A. L. P.; Silva, A. C. A.; Varela, J. J. G. Cu-modified B₁₂N₁₂ nanocage as a chemical sensor for nitrogen monoxide gas: a density functional theory study. **Journal Nanoparticle Research**, 25, 248, 2023.

16. Ammar, H. Y.; Badran, H. M.; Eid, K. H. M. TM-doped $B_{12}N_{12}$ nano-cage (TM = Mn, Fe) as a sensor for CO, NO, and NH₃ gases: A DFT and TD-DFT study. **Materials Today Communications**, 25, 101681, 2020.

17. Silva, A. L. P.; Varela, J. J. G.; $MB_{11}N_{12}$ (M = Fe–Zn) Nanocages for Cyanogen Chloride Detection: A DFT Study. Journal of Inorganic and Organometallic Polymers and Materials, 34, 302–312, 2024.

18. Rakrai, W.; Tabtimsai, C.; Kaewtong, C.; Chuekachang, S.; Keawwangchai, S.; Keawwangchai, T.; Wanno, B. Hydrogen storage and sensing ability of group 8B transition metal-doped $B_{12}N_{12}$ nanocages: a DFT investigation. **Structural Chemistry**, 1-17, 2023.

19. Oku, T.; Narita, I.; Nishiwaki, A. Formation and structures of $B_{36}N_{36}$ and Y@B₃₆N₃₆ clusters studied by highresolution electron microscopy and mass spectrometry. **Journal of Physics and Chemistry of Solids**, 65, 369– 372, 2004.

20. Wang, T.; Tian, Z.; Yttrium-decorated $C_{48}B_{12}$ as hydrogen storage media: A DFT study. International Journal of Hydrogen Energy, 45, 24895-24901, 2020.

21. Esrafili, M. D.; Sadeghi, S. Y decorated all-boron B₃₈ nanocluster for reversible molecular hydrogen storage: A first-principles investigation. **International Journal of Hydrogen energy**, 47, 11611-11621, 2022.

22. Neese, F. Software update: The ORCA program system–Version 5.0. WIREs. Comput Mol. Sci. 12, e1606, 2022.

23. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. **J. Comp. Chem.** 27, 1787–1799, 2006.

24. Grimme, S. Density functional theory with London dispersion corrections. **WIREs Comput. Mol. Sci.** 1, 211–228, 2011.

25. Shamim, S. U. D.; Miah, M. H.; Hossain, M. R.; Hasan, M. M.; Hossain, M. K.; Hossain, M. A.; Ahmed, F. Theoretical investigation of emodin conjugated doped $B_{12}N_{12}$ nanocage by means of DFT, QTAIM and PCM analysis. **Phys. E: Low-Dimens.** 136, 115027, 2022.

26. Hossain, M. R.; Hasan, M. M.; Nishat, M.; Noor, E. A.; Ahmed, F., Ferdous, T.; Hossain, M. A.; DFT and QTAIM investigations of the adsorption of chlormethine anticancer drug on the exterior surface of pristine and transition metal functionalized boron nitride fullerene. **J. Mol. Liq.** 323, 114627, 2021.

27. Redondo, A.; Zeiri, Y.; Lowand, J. J.; Goddard, W. A. Application of transition state theory to desorption from solid surfaces: Ammonia on Ni **J. Chem. Phys.** 79 (111), 6410, 1983.

28. Zahedi, E.; Seif, A.; Ahmadi, T. S. Structural and Electronic Properties of Ammonia Adsorption on the $C_{30}B_{15}N_{15}$ Heterofullerene: A Density Functional Theory Study. J. Comput. Theor. Nanosci. 8, 2159-5165, 2011.

29. Koettgen, J.; Zacherle, T.; Grieshammer, S.; Martin, M. Ab initio calculation of the attempt frequency of oxygen diffusion in pure and samarium doped ceria. **Phys. Chem. Chem. Phys.** 19, 9957-9973, 2017.

30. Kaewmaraya, T.; Ngamwongwan, L.; Moontragoon, P.; Jarernboon, W.; Singh, D.; Ahuja, R.; Karton, A.; Hussain, T. Novel green phosphorene as a superior chemical gas sensing material. **J. Hazard. Mater.** 401, 123340, 2021.

31. Fan, G.; Wang, X; Tu, X.; Xu, H.; Wang, Q.; Chu, X. Density functional theory study of Cu-doped BNNT as highly sensitive and selective gas sensor for carbon monoxide. **Nanotechnology**. 32, 075502, 2021.

32. Koopmans, T. Ordering of wave functions and eigenenergies to the individual electrons of na atom. **Physica**. 1, 104–113, 1993.

33. Parr, R. G.; Szentpaly, L.V.; Liu, S. Electrophilicity index. J Am Chem Soc. 121, 1922–1924, 1999.

34. Pearson R.G. The principle of maximum hardness. Acc. Chem. Res. 26, 250-255, 1993.

35. Pearson, R.G. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. U.S.A. 83, 8440–8441, 1986.

36. Peng, S.; Cho, K.; Qi, P.; Dai, H. Ab initio study of CNT NO₂ gas sensor. Chem. Phys. Lett. 387, 271, 2004.