

ESTUDO TEÓRICO DOS CANABINOIDES ANTICANCER DE MAMA

<u>Marcos Daniel G Pizon</u> (IC)¹, Antonio Florêncio de Figueiredo (PQ)², Heriberto Rodrigues Bitencourt (PQ)³, Tainara G. Coelho (IC)¹, Ana T. M. Lopes (IC)¹, José Ciríaco Pinheiro (PQ)^{1*}.

¹Laboratóno de Química Teórica e Computacional, UFPA, Belém, PÁ; ²IFPA Castanhal, PA; ³Laboratório de Síntese Orgânica, UFPA, Belém, PA.

Palavras-Chave: Canabinoides, Anticâncer de mama, Relação estrutura-atividade.

Introdução

Os canabinoides são compostos químicos encontrados principalmente na planta Cannabis sativa. Estes fitocanabinoides são extraídos das folhas, flores, caules e sementes da planta, além de estarem presentes na resina secretada pelas flores femininas¹. O Câncer é a denominação para um grupo de doenças caracterizadas pelo crescimento e multiplicação descontrolados de células anormais, capazes de invadir estruturas próximas e se espalharem em diversas regiões do organismo². Neste trabalho, o Δ^9 -THC e o CBD-A são investigados através do potencial eletrostático molecular (*molecular electrostatic potential, MEP*), dos orbitais moleculares (OMs) e da interação com o receptor CB2 para identificar características estruturais necessárias às atividades biológicas, visando compreender o papel dos canabinoides na atividade anticâncer de mama.

Material e Métodos

Foram usados os computadores com ambiente Opensues Linux 11.0 64-bits com processador AMD PHENOM 955X4 2.2 GHZ com 4GB de memória real e um computador com sistema operacional WINDOWS. Os programas utilizados foram: GAUSSIAN 98³, MOLEKEL 5.4⁴, HYPERCHEM 8.0.6⁵, AUTODOCK TOOLS 4.2⁶, PIROUETTE 3.10⁷ e o MINITAB 19⁸, CHEMSKETCH 2.4⁹, disponível no laboratório de química teórica e computacional (LQTC). A validação de métodos computacionais aplicados na modelagem molecular já foi estabelecida em estudos anteriores com estudo Computational scrutiny of psychoactive cannabinoids through molecular electrostatic potential and CB1 receptor interaction¹⁰. E as estruturas-2D dos canabinoides anticâncer de mama (Fig1) foram retiradas da literatura¹¹.A estrutura 3D do 8β-Hidroxi- Δ^9 -THC foi retirado do banco de dados CSD e usada na construção da estrutura do Δ^9 -THC (Fig 1a), que foi completamente otimizada, e os parâmetros geométricos na conformação mais estáveis foram usados conjuntamente com os dados experimentais na escolha e seleção do conjunto de base (B3LYP/6-31G**) usado na construção da estrutura do CBD-A, também completamente otimizada. As conformações mais estáveis dos dois (2) compostos permitiram o cálculo do MEP, do OMs e da interação ligante-CB2. O CB2 foi obtido do banco de dados cristalográfico Protein Data Bank, no complexo CB2-AM10257 com o código PDB 5ZTY¹².

Figura 1. Estruturas-2D dos compostos Δ^9 -THC (a) e CBD-A (b). A conformação famarcoforica (Sistemas de anéis carboclico A e C, hidroxila em C1 e cadeia hidrofóbica em C3) importante par atividade anticâncer é mostrada no Δ^9 -THC.

Resultados e Discussão

Na Figura 2(a), é mostrado o gráfico dos scores obtidos pelo PCA (PC1-PC2) e (b) o dendrograma obtido pelo HCA para os métodos teóricos e dados experimentais e os desvio padrao (c). Na Figura 3, são representadas a estrutura 2D (a), o Potencial Eletrostático Molecular (MEP) (b),os orbitais moleculares (c) e os resultados de docking molecular (d). Na Figura 2(a), a aplicação da PCA separou os métodos em duas classes: métodos semi-empíricos e outros métodos (teóricos e experimental). A separação manteve 82,88% da informação original, com contribuição de PC1= 42,08, PC2= 25,28 e PC3= 15,52%. De acordo com essa figura, o método B3LYP/6-31G** encontra-se mais próximo do experimental. Na Figura 2(b), os métodos formam vários agrupamentos, e B3LYP/6-31G** situa-se mais próximo do experimental, confirmando o resultado da PCA por meio do HCA. Assim, o método mais adequado para desenvolver o estudo é B3LYP/6-31G**. A escolha do B3LYP/6-31G com duas funções de polarização (6-31G**) para os cálculos foi motivada pela necessidade de capturar de maneira mais precisa os efeitos das interações intermoleculares e a distribuição da densidade eletrônica em regiões críticas, como as interações ligante-receptor¹³. Embora o desvio-padrão obtido para esse método (84,9) não tenha sido o menor entre os métodos testados, ele está muito próximo dos dados experimentais (79,6), indicando uma boa reprodução dos resultados experimentais. Comparado ao B3LYP/6-31G*, que também apresentou um desvio-padrão de 84,9, a inclusão de uma segunda função de polarização no B3LYP/6-31G** permite uma descrição mais acurada das interações moleculares¹⁴. Com esses 3 resultados foi feito a seleção do B3LYP/6-31G** pelo PCA, HCA e o desvio padrao por apresenta-se o modelo mais precisso que o B3LYP/6-31G*.

Na Figura 3b, o potencial eletrostático, V(r), dos canabinoides Δ 9-THC e CBD-A apresenta regiões negativas de -121,7 kcal/mol (vermelho) a aproximadamente inferior a +13,49 kcal/mol (amarelo e verde) e -105,4 (vermelho) a aproximadamente +29,37 (amarelo e verde), respectivamente. Ambos os compostos também apresentam faixas de potencial eletrostático positivas, indo de inferior a +13,49 a +148,7 kcal/mol (verde e azul) para o Δ 9-THC, e de inferior a +29,7 a +163,8 kcal/mol (verde e azul) para o CBD-A.

Como pode ser visto, o mapa de MEP do Δ 9-THC revela que a hidroxila (-OH) na posição C1 e o radical metil (-CH3) na posição C9 são controlados pela manutenção da conformação farmacofórica, permitindo uma provável interação com o receptor CB2. Já no CBD-A, a interação da hidroxila (-OH) na posição C1 com o radical metil (-CH3) resulta em uma mudança completa da orientação da estrutura molecular devido à ausência do anel piranico, causando a perda da conformação farmacofórica e dificultando uma interação adequada com o receptor CB2. Isso explica a diminuição da atividade anticâncer de mama em relação ao Δ 9-THC¹⁵.

Além do MEP, a análise dos orbitais moleculares complementa essa interpretação. O LUMO+2 do Δ 9-THC está posicionado principalmente sobre os átomos C8, C9, C10, C10a e O5, áreas essenciais para a interação com o receptor CB2. Esses átomos coincidem com as regiões descritas no MEP, reforçando a importância do radical metil em C9 e da hidroxila em C1 para a manutenção da conformação farmacofórica. A presença do LUMO+2 nessas regiões sugere que essas áreas são altamente reativas, facilitando a aceitação de elétrons durante a interação com o receptor, o que melhora a estabilidade da interação e, consequentemente, a atividade anticâncer do Δ 9-THC.

Em contrapartida, no CBD-A, o orbital LUMO+1 é localizado em regiões próximas ao anel parcial e ao grupo carboxila, envolvendo átomos como C3, C4, C5, O6, C7 e O9. Isso resulta em uma conformação que não favorece a manutenção da farmacoforicidade ideal para uma

interação eficiente com o receptor CB2. Essa distribuição dos orbitais, juntamente com o MEP, sugere que as áreas reativas do CBD-A não se alinham de maneira eficaz com os resíduos críticos do receptor CB2, como Leu182, Pro184, Phe94, Phe106 e Lys109, o que leva à diminuição da atividade anticâncer.

Por fim, a análise do docking molecular (Figura 3c) confirma que o Δ 9-THC, em relação ao CBD-A, possui uma conformação molecular que favorece a interação com o receptor CB2, devido à presença da hidroxila na posição C1 e do radical metil na posição C9. Esses grupos funcionais mantêm uma conformação farmacofórica adequada para essa interação, conforme corroborado pela análise dos orbitais moleculares e do MEP, o que explica a maior atividade anticâncer do Δ 9-THC em comparação ao CBD-A¹⁶.

Experiment	S.	÷	20	1	ō.
E3LYD _{(6.3.}			ſ		
Bay we					
""Bearle.					
HE/8.31G.	Ĩ			_	
HE/B.31					
HER			_		
Jr/8-31G					
est have are	ſ				
Balipages				_	
Ball YPaga 21G	1				
Pune					
Enna.					
AM7					

(b)

Estatísticas

Variável	DesvPad
HF/3-21G	85,0
HF/3-21G*	88,1
HF/6-31G	84,9
HF/6-31G*	85,1
B3LYP/3-21G	80,0
B3LYP/3-21G*	80,1
B3LYP/6-31G	84,4
B3LYP/6-31G*	84,9
B3LYP/6-31G**	84,9
AM1	85,8
PM3	79,8
PM6	80,1
EXPERIMENTAL	79,6

Imagem 2. Gráfico dos scores obtido da PCA (PC1-PC2) e (b) dendrograma obtido da HCA para os métodos teóricos e dados experimentais e o desvio padrão (c)

Figura 3. Estrutura 2D (a), mapas de Potencial Eletrostático Molecular (MEP) (b), orbitais moleculares e interação dos canabinoides Δ 9-THC (composto 1) e CBD-A (composto 2) com o receptor CB2 (c).

Conclusões

Análise do PCA separou claramente os métodos semi-empíricos dos teóricos e experimentais, confirmando que o método B3LYP/6-31G^{**} é o mais adequado para o estudo em questão, sendo o mais próximo dos dados experimentais. O HCA corroborou esses resultados, agrupando o B3LYP/6-31G^{**} junto aos método experimentai . A investigação dos compostos através do MEP evidenciou a importância da interação entre a hidroxila (-OH) na posição C1 e o radical metil (-CH3) na posição C9, essenciais para a manutenção da conformação farmacofórica do Δ^9 -THC e sua interação eficiente com o receptor CB2. No Δ 9-THC, o LUMO+2 está posicionado sobre os átomos C8, C9, C10, C10a e O5, regiões críticas para a interação com o receptor CB2. Essa distribuição orbital, alinhada com o MEP, indica que essas áreas são altamente reativas e propícias à aceitação de elétrons, favorecendo uma interação estável com o receptor. Em contraste, no CBD-A, o LUMO+1 está localizado em regiões que não favorecem uma manutenção ideal da conformação farmacofórica, resultando em uma interação menos eficiente com o receptor CB2. Dessa forma, a distribuição dos orbitais

moleculares no Δ 9-THC, associada ao MEP, explica sua maior atividade anticâncer em relação ao CBD-A, evidenciando o papel crucial dessas regiões na reatividade e estabilidade da interação com o receptor CB2. Por fim, o substituinte hidroxila (-OH) em C1 no Δ^9 -THC, conforme indicado pelo MEP, contribui significativamente para uma orientação adequada no receptor CB2, resultando em uma maior atividade anticâncer em comparação com o CBD-A.

Agradecimentos

LQTC, UFPA e ao ABQ

Referências

[1] Blázquez C, Casanova ML, Planas A, Gómez Del Pulgar T, Villanueva C, Fernández-Aceñero MJ, Aragonés J, Huffman JW, Jorcano JL, Guzmán M. Inhibition of tumor angiogenesis by cannabinoids. **FASEB J**. 2003 Mar;17(3):529-31. doi: 10.1096/fj.02-0795fje. Epub 2003 Jan 2. PMID: 12514108.

[2] OLIVEIRA, TamaraRodrigues de; CORRÊA, Camila Soares Lima; WEISS, Vinícius Faria; BAQUIÃO, Ana Paula de Sousa Silva; CARVALHO, Laís Lage de; GRINCENKOV, Fabiane Rossi dos Santos; CARVALHO, Simone Meira. Câncer de mama e imagem corporal: impacto dos tratamentos no olhar de mulheres mastectomizadas. **Saúde e Pesquisa**, v. 12, n. 3, p. 451-462, set./dez. 2019. Disponível em: https://pesquisa.bvsalud.org/portal/resource/pt/biblio-1052403. Acesso em: 8 set. 2024.

[3] Frisch, A.; Frisch, M. J. Gaussian 98 User 'S Reference, revision A.7. Gaussian, Inc, 1998.

[4] Flukiger, P.; Luthi, H. P.; Portmann, S.; Weber, J. Molekel. Swiss Center for Scientific Computing: Mano, Switzerland, 2000-2001.

[5] HYPERCUBE, Inc. HyperChem (Versão 8.0.6) [Software]. Gainesville, FL: Hypercube, Inc., 2007.

[6] MORRIS, G. M.; HUEY, R.; LINDSTROM, W.; SANNER, M. F.; BELEW, R. K.; GOODSELL, D. S.; OLSON, A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, v. 30, n. 16, p. 2785-2791, 2009.

[7] INFOMETRIX, Inc. Pirouette (Versão 3.10) [Software]. Woodinville, WA: Infometrix, Inc., 2007.

[8] MINITAB, LLC. Minitab (Versão 19) [Software]. State College, PA: Minitab, LLC., 2019.

[9] ADVANCED CHEMISTRY DEVELOPMENT, Inc. ACD/ChemSketch (Versão 2.4) [Software]. Toronto, ON: ACD/Labs, 2012.

[10] CARDOSO-FILHO, Luís Nelson Cardoso; PINHEIRO, José Ciríaco; FIGUEIREDO, Antonio Florêncio de; PINHEIRO, Ana Cecília Barbosa; SANTOS, Marcos Antonio Barros dos; GIL, Fábio dos Santos; PIZON, Marcos Daniel Gonçalves; BITENCOURT, Heriberto Rodrigues. Computational scrutiny of psychoactive cannabinoids through molecular electrostatic potential and CB1 receptor interaction. **Contribuciones a las Ciencias Sociales**, 2024. Disponível em: <u>https://api.semanticscholar.org/CorpusID:271683651</u>. Acesso em: 23 set. 2024

[11] EUROPEAN BIOINFORMATICS INSTITUTE. ChEMBL Compound Report Card – CHEMBRLA465. Disponivel em:https://www.ebi.ac.uk/chembl/compound-_report_card/CHEMBLA465/.Acesso em: 30 jan.2024

[12] LI, X. et al. **Crystal Structure of the Human Cannabinoid Receptor CB2**. *Cell*, v. 176, p. 459-467.e13, 2019. DOI: <u>https://doi.org/10.1016/j.cell.2018.12.011</u>. Acesso em: 8 set. 2024.

[13] Density Function Theory B3LYP/6-31G** Calculation of Geometry Optimization and Energies of Donor-Bridge-Acceptor Molecular System." *International Journal of Current Engineering and Technology*, vol. 4, no. 4, 2014, pp. 2342-2345. Disponível em: <u>https://www.inpressco.com/wp-content/uploads/2014/07/Paper62342-2345.pdf</u>. Acesso em: 23 set. 2024

[14] A Comparative Study of DFT/B3LYP/6-31G(d,p), RM062X/6-31G(d,p), B3LYP/6-311++G(d,p) and HSEH1PBE/6-31G(d,p) Methods Applied to Molecular Geometry and Electronic properties of Cs-C60Cl6 Molecule." *ADYU Journal of Science*, vol. 11, no. 2, 2021, pp. 456-473. Disponível em: <u>https://www.researchgate.net/profile/Ebru-Karakas-Sarikaya/publication/356813187_A_Comparative_Study_of_DFTB3LYP6-</u> <u>31_Gdp_RM062X6-31G8dp_B3LYP6-311_Gdp_and_HSEH1PBE6-</u> 31Gdp_Methods Applied to Molecular Geometry and Electronic properties of Cs-

<u>C60_Cl6_Molecule/links/654cb062b1398a779d732fe7/A-Comparative-Study-of-DFT-B3LYP-6-31-Gd-p-RM062X-6-31G8d-p-B3LYP-6-311-Gd-p-and-HSEH1PBE-6-31Gd-p-Methods-Applied-to-Molecular-Geometry-and-Electronic-properties-of-Cs-C60-Cl6-Molecule.pdf</u>. Acesso em: 23 set. 2024.

[15] Araújo, J., Miranda, R., Castro, J., Figueiredo, A., Pinheiro, A., Morais, S., Santos, M., Pinheiro, A., Pinheiro, A., Gil, F., Bitencourt, H., Alves, G. and Pinheiro, J. (2023) Designing Artemisinins with Antimalarial Potential, Combining Molecular Electrostatic Potential, Ligand-Heme Interaction and Multivariate Models. *Computational Chemistry*, **11**, 1-23. doi: <u>10.4236/cc.2023.111001</u>

[16] Li, X., Hua, T., Vemuri, K., Ho, J.-H., Wu, Y., Wu, L., Popov, P., Benchama, O.,
Zvonok, N., Locke, K., Qu, L., Han, G. W., Iyer, M. R., Cinar, R., Coffey, N. J., Wang, J.,
Wu, M., Katritch, V., Zhao, S., Kunos, G., Bohn, L. M., & Makriyannis, A. (2019). Crystal
structure of the human cannabinoid receptor CB2. Cell, 176(3), 459467.e13. doi:10.1016/j.cell.2018.12.0111.